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Abstract

The relation between heat flow through snow and microstructure is
crucial for the comprehension and modeling of thermophysical, chemical,
and mechanical properties of snow. This relationship was investigated
using heat flux measurements combined with a microstructural numerical
approach. A snow sample was subjected to a temperature gradient and
the passing heat flux was measured. Simultaneously, the snow microstruc-
ture was imaged by X-ray micro-tomography. The heat flow through the
observed ice matrix and its heat conductivity was computed by a finite
element method. Comparison of measured and simulated heat conductiv-
ities suggests that heat conduction through the ice matrix is predominant.
The representative elementary volume with respect to density and heat
conductivity as well as the tortuosity factor of the ice matrix was deter-
mined. In contrast to the density, the tortuosity factor takes into account
the relevant geometry of the ice matrix and has many advantages in heat
transfer models.

1 Introduction

Heat flow through snow induces metamorphism and thus modifies the snow mi-
crostructure, which in turn influences the properties of snow (Arons and Colbeck ,
1995). These include thermophysical properties, important for modeling the en-
ergy balance of snow-covered landscapes (Sokratov and Barry , 2002); chemical
properties used for the interpretation of ice cores (Legrand and Mayewski , 1997);
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and mechanical properties necessary for avalanche forecasting (Schweizer et al.,
2003). An understanding of the relationship between heat flow and snow mi-
crostructure is thus crucial for improving models in climatology, interpretations
of geochemical and isotopic signals, and avalanche research.

Current heat transport models (Sturm et al., 1997) relate the effective heat
conductivity of snow, κs, empirically to the snow density. However, measured
κs differ up to five times between measurements made in snow that is similar
both in density and in crystal type (Sturm et al., 1997). It is thus necessary to
find more relevant parameters related to the snow microstructure that govern
κs. So far, the microstructural complexity always required simplifications, as for
example in the model of Adams and Sato (1993), which uses uniformly packed
ice spheres. Only recently did tomographic reconstructions (Schneebeli , 2000;
Brzoska et al., 1999) lead to 3D representations of the real snow structure at
the micro-scale. Schneebeli (2004) uses such reconstructions to compute elastic
stress in the ice matrix of snow, but no relation to heat transport has been
established so far.

We used the snow microstructure imaged by computed X-ray micro-tomography
(µ-CT) to study heat transport through snow. We subjected a snow sample to
a constant temperature gradient, |∇Tg|, measured the passing heat flux, and
determined the effective heat conductivity of the snow. Simultaneously, we im-
aged the snow microstructure by µ-CT, as described by Schneebeli and Sokratov
(2004), discretized the ice matrix by finite elements, and solved the stationary
heat transport equation corresponding to the experimental setup. We deduced
the representative elementary volume (REV) of the snow with respect to den-
sity and heat flux in the ice matrix and related it to microstructural parameters
obtained by image analysis. Moreover, we determined the tortuosity factor of
the ice matrix, which takes into account the heat transport in the ice matrix.

2 Experimental Setup

We sieved snow into a cylindrical sample holder developed for temperature gra-
dient metamorphism experiments inside the micro-tomograph (Schneebeli and
Sokratov , 2004), resulting in a snow sample of 2 cm height and 4.8 cm in di-
ameter. The final density, determined by weighting the sample, was ρs =
268 kg m−3, and the snow type was small, rounded grains (class 3a in the inter-
national classification). We kept the temperature inside the µ-CT measurement
chamber constant at Tenv = 265.6 ± 0.5 K and applied a temperature gradient
of |∇Tg| = 40 ± 5 K m−1 to the snow. We installed two heat flux sensors with
a precision of ±0.1 W m−2 at the top and bottom of the sample. Directly after
imposing the temperature gradient and as soon as the flux measurements were
stabilized, we determined the heat flux through the snow and imaged the snow
using µ-CT with a spatial resolution of 25µm. We deduced two microstruc-
tural parameters using the distance transform image analysis technique: the
mean thickness of the ice matrix, Tb.Th, which is determined by filling max-
imal spheres into the structure and taking their average size (Hildebrand and
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Figure 1: The computational domain Ωi consisting of the ice matrix in the snow
of class 3a, with the simulated temperature distribution. ∂Ωbi and ∂Ωti are the
bottom and top of the domain boundary ∂Ωi, respectively, while ∂Ωai represents
the remaining boundary. The shown domain has dimensions of 5×5×4.875 mm,
respectively 200× 200× 195 voxels.

Rüegsegger , 1997); and the number of traversals of ice per unit length on a
linear path through the structure, called trabecular number and noted Tb.N,
which is given by the inverse of the mean distance between the medial axes of
the ice structure (Hildebrand et al., 1999).

3 Numerical Model

We discretized the ice matrix of a sub-volume Ω of the snow by transforming
each ice voxel to an eight-node brick finite element, leading to the computational
domain Ωi. Let an orthonormal coordinate system (O,~ex, ~ey, ~ez), denote a point
in Ωi by ~x = (x, y, z), and suppose that ~ez is oriented along the height of Ωi
and thus parallel to the applied heat flux. Denote the boundary of Ωi by ∂Ωi
and set ∂Ωi = ∂Ωti∪∂Ωbi ∪∂Ωai , where the superscripts t and b stand for the top
and bottom of Ωi, while ∂Ωai represents the remaining boundaries (Figure 1).

We solved the stationary energy conservation equation within Ωi:

κi∇2T (~x) = 0, ~x ∈ Ωi, (1)

where T (~x) is the temperature and κi = 2.29 W m−1 K−1 is the conductivity
of pure, crystalline ice, supposed to be constant and taken as κi = κi(Tenv) in
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the definition given by Fukusako and Yamada (1993). The error on κi due to
non-constant temperatures is only ±0.2% and will be neglected. The boundary
conditions were chosen to meet the experimental settings:

T = T0, ~x on ∂Ωb
i , (2)

T = T1, ~x on ∂Ωt
i , (3)

∂T

∂~n
= 0, ~x on ∂Ωa

i , (4)

where ~n denotes the outward normal on ∂Ωai , and T0 and T1 were chosen such
that |∇T cg |

def= ∆T/h = µ(|∇Tg|), with ∆T = T0 − T1, h the height of Ωi,
and µ(|∇Tg|) the mean value of the experimental |∇Tg|. The homogeneous
Neumann boundary condition (eq. 4) corresponds to insulation at the outer
walls of Ωi as in the experiment and no heat exchange between ice and air, i.e.,
neglecting the pore space.

The finite element code by van Rietbergen et al. (1995) is designed to com-
pute elastic deformations in bones. By using the physical analogy between the
Hook’s and Fourier’s laws we adapted the code to solve equations (1)-(4). The
computation is based on a preconditioned conjugate gradient method and an
element-by-element approach.

4 Results

4.1 Representative Elementary Volume and structural pa-
rameters

The representative elementary volume (REV) of a material with respect to a
macroscopic property is the minimal volume at which it is reasonable to define
this property (Brown et al., 2000).

We determined the REV with respect to the density by using four cubic
sub-volumes, within each of them we increased the computational volume size
in ~ex, ~ey, ~ez from the center on (Figure 2, left axis).

To determine the REV with respect to the heat flux, we solved numerically
the equations (1)-(4) for snow volumes with different sizes and at different po-
sitions. We kept the size in the direction of the heat flux, the ~ez-direction,
constant equal to 195 voxels. In order to keep the computational time rea-
sonable, we performed the following simulations: For dimensions in ~ex, ~ey of
50× 50, 124× 124, and 200× 200 voxels, we chose 10, 7, and 4 different regions,
respectively, while we performed only one simulation (at one position) for do-
main sizes of 74, 150, 174, 224, and 250 voxels in ~ex, ~ey. The corresponding heat
fluxes through the ice matrix are presented in Figure 2, right axis.

Concerning the structural parameters, we determined the mean ice thickness
Tb.Th = 0.1 mm and the trabecular number Tb.N = 3.1 mm−1 for the total
volume of the observed snow.
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Figure 2: Density of the snow (left) and the computed heat flux through the
ice matrix (right) for different snow sub-volumes and in function of the volume
size.

4.2 Measured and Simulated Heat Transport

The measured heat flux, ~qs, which was taken as the mean value given by the
bottom and top heat flux sensors, was |~qs| = 7.2±0.1 W m−2. With the imposed
temperature gradient |∇Tg| = 40± 5 K m−1 and by Fick’s law, this corresponds
to an experimental heat conductivity of κs = 0.18± 0.02 W m−1 K−1.

Using the boundary conditions corresponding to the experiment with the
mean temperature gradient |∇T cg | = 40 K m−1, we computed the temperature
distribution within the ice matrix, neglecting the pore space and any phase
changes (Figure 1). The temperature and temperature gradient fields within a
2.25× 0.3× 2.7 mm sub-domain are shown enlarged in Figure 3.

For each voxel, respectively finite element, the temperature gradient ∇Tc
was determined from the computed temperature values at its nodes by linear
approximation and an apparent heat flux along ~ez through the snow, denoted
~q si · ~ez, considering only conduction in the ice matrix, was computed by

~q si · ~ez =

∫

Si
~qi · ~ez ds
As

, (5)

where ~qi = −κi∇Tc is the heat flux in the ice matrix, Si is the ice matrix surface
in any cross-section perpendicular to ~ez, and As is the total cross-section in ~ex, ~ey
of the computational domain. An apparent heat conductivity was deduced by
setting κc = ~q si ·~ez

|∇T cg |
. For a computational volume of 250 × 250 × 195 voxels, we

determined κc = 0.15 ± 0.01 W m−1 K−1 for the studied snow, where the error
estimate is related to the REV and the discretization as discussed below.
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Figure 3: Computed temperature (left) and temperature gradient (right) in the
ice matrix of a 2.25×0.3×2.7 mm (respectively 90×12×108 voxel) slice within
the computational region.

Table 1: Tortuosity factors of porous space in cubic lattices of identical spheres
at dense packing computed by our model compared with the ones published
by Tallarek et al. (1999).

cubic lattice 21 vox./lattice 41 vox./lattice published
SC 1.45 1.41 1.38
BCC 1.55 1.52 1.47
FCC 1.71 1.65 1.62

4.3 Tortuosity Factor

The square of the ratio between the effective diffusion path, Le, through a
porous medium and its length along the major diffusion axis, L, is known as
the tortuosity factor, τ2 (Epstein, 1989). If the porous medium is modeled
by a bundle of sinuous but parallel capillaries or pores, Le is the average pore
length. If there is no well defined geometric diffusion path, one can still express
the effective conductivity of the porous medium, κe, by the conductivity of the
matrix, κ, by following the argumentation of Epstein (1989) and get κe = ε

τ2κ,
where ε is the volumetric density. This leads to τ2 = κε

κe
.

We computed the tortuosity factor for the porous space in cubic lattices of
densely packed, identical spheres using a computational domain of 53 lattices,
where each lattice had a spatial resolution in each direction ~ex, ~ey, ~ez of 21 and
41 voxels. We compared the results with the values published by Tallarek et al.
(1999) in Table 1; Their values are based on the analytical solution for the ef-
fective diffusion coefficient by Venema et al. (1991). In addition, we determined
a tortuosity factor of 2.01 for the sphere-structure of the BCC configuration.

For the ice matrix, with κe = κc = 0.15 ± 0.01 W m−1 K−1, κ = κi =
2.29 W m−1 K−1, and ε = ρs/ρi = 268/917 = 0.29, we deduced a tortuosity

6



factor τ2
i = κiε/κc = 4.4± 0.3.

5 Discussion

5.1 Representative Elementary Volume

The density related REV of the studied snow was 1.253 mm3 (Figure 2). Coléou
et al. (2001) obtained values of 2.53 mm3 for a crust and volumes around 1.53 mm3

for wet grains, depth hoar, or partially faceted particles. That our REV esti-
mation is somewhat smaller might be explained by the smaller grain size of our
snow.

A reasonable approximation of the REV with respect to the heat flux in the
ice matrix, and thus to the tortuosity factor τ2

i , was 53 mm3. While the heat
fluxes scattered considerably for smaller volumes, we computed here a mean heat
flux of 5.92 W m−2 with a standard deviation of 0.31 W m−2 and are thus within
a precision of ±5%. Considering the trabecular number of Tb.N = 3.1 mm−1,
the REV related to τ2

i corresponds thus to a volume of about 15 structural
elements in each dimension. It is approximately 43 times larger than the REV
with respect to density. Up to some extent this may be explained by boundary
effects as some arms of the ice matrix end up at a side boundary and are thus a
dead-end for the heat flux; but mainly it is explained by the high variability of
∇Tc in the ice matrix (Figure 3, right), which leads to a much larger averaging
volume than for the density, where the averaging field is just binary.

5.2 Heat Transport through the ice matrix

The numerical model of van Rietbergen et al. (1995) adapted to heat transport
through the ice matrix gave a heat conductivity which is expected from the direct
measurement of heat conductivity in the snow. Considering the equivalence
of the differential equations which were solved and the detailed discussion of
the model limitations related to resolution, REV, and jagged interfaces by van
Rietbergen et al. (1995), it remained to show that the discretization of our
snow microstructure meets the criteria already established for bone. With the
determined mean ice thickness of Tb.Th = 0.1 mm and the resolution of 25µm,
we reach a discretization of approximately 4 voxels per ice structure thickness.
van Rietbergen et al. (1995) showed that, with this resolution, convergence in
space was reached for stress and strain computations within a tolerance < 2%.
We confirmed this result by a numerical convergence test with respect to the
apparent heat conductivity of the ice matrix.

Analyzing the computed temperature distribution within the ice matrix, we
note that high temperature differences of up to 20% of the overall ∆T occurred
on a very short distance between one ice grain and another across a pore (Fig-
ure 3, left). This is due to the very tortuous structure of the ice matrix and
leads to high temperature and vapor concentration gradients in the pores, which
strongly influence metamorphism. High temperature gradients occurred also in
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the ice matrix (Figure 3, right).

5.3 Heat conductivity

Heat transport through snow is governed by heat conduction in the ice matrix
and the pore space as well as by the heat transport associated with the water va-
por diffusion. Convective effects can be neglected for the dimension of the snow
sample and temperature gradient considered in this study, as an estimation of
the Rayleigh number leads to Ra ∼= 1500 (Zhao et al., 2005). Comparison of the
measured heat conductivity κs = 0.18±0.02 W m−1 K−1 with the computed one
κc = 0.15 ± 0.01 W m−1 K−1 suggests that conduction through the ice matrix
was predominant and in the order of 80% of the overall heat flow. This estimate
might vary for other snow types and densities and has to be interpreted care-
fully, as some errors with respect to the idealized model were neglected. These
include possible variations in the heat conductivity of ice, imperfect boundary
conditions, or errors related to the image analysis procedures. The completion
of the numerical model by water vapor diffusion will help to answer the question
on the relative importance of the heat conduction mechanisms.

Note that Sturm et al. (1997) measured for snow of the same class (3a)
and with similar density to our experiment values of κs between 0.15 and
0.18 W m−1 K−1, while the empirical model gives κs = 0.10 W m−1 K−1, with a
95% confidence interval of approximately ±0.1 W m−1 K−1.

5.4 Tortuosity Factor

By the simple solution of the heat equation on the ice structure observed by
µ-CT, we deduced a microstructural parameter of snow which is per definition
directly related to the heat flux: the tortuosity factor τ2

i . By comparing com-
puted tortuosity factors for cubic lattices with published values (Table 1), we
conclude that for a resolution of 41 voxels per lattice, which corresponds roughly
to having 4 voxels per structure-branch, we are within a precision of ±1.9–3.4%,
depending on the lattice structure. The fact that our computed values are sys-
tematically higher might be explained by discretization artefacts which result in
contacts between spheres corresponding to disks instead of infinitesimal point
contacts.

The computed tortuosity factor of the ice-matrix τ2
i = 4.4 ± 0.3 was much

larger compared to spherical beds in a BCC-configuration (τ2 = 2.01) and to an
isotropic porous medium (2.0, (Epstein, 1989)). Classical geometrical models
for snow microstructure assume either a BCC or FCC configuration ((Adams
and Sato, 1993; Baunach et al., 2001)) which cannot be justified based on our
computations.
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6 Conclusion

The effective heat conductivity of the ice matrix in snow samples, even of very
complex and layered texture, can be simulated and the tortuosity factor of the
ice matrix can be deduced. The calculated tortuosity factor is very high, even
for the texturally simple snow type investigated, compared to a material with
a simple BCC-structure. Even higher tortuosity factors must be expected for
texturally more complex snow types such as depth hoar. The high tortuosity
causes, on very short distances across the pores, high temperature gradients
and high vapor fluxes which strongly influence the metamorphic process. In a
simple extension, using the analogy between Fourier’s law and Darcy’s law, the
air permeability of snow can be calculated. The effective heat conductivity and
the air permeability can be determined directly, if a measured three-dimensional
snow structure is available.
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